

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 690 (2005) 2787-2789

www.elsevier.com/locate/jorganchem

New method of synthesis of 6-hydroxy-nido-decaborane $6-(OH)B_{10}H_{13}$ by cage opening of closo- $[B_{10}H_{10}]^{2-}$

Daoud Naoufal ^{a,b,*}, Maher Kodeih ^a, David Cornu ^b, Philippe Miele ^b

^a Laboratoire de Chimie de Coordination, Université Libanaise, Faculté des Sciences I, P.O. Box 25/323, Ghobeyri, Lebanon ^b Laboratoire des Multimatériaux et Interfaces (UMR CNRS 5615), UCB Lyon 1, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France

> Received 10 October 2004; accepted 13 January 2005 Available online 19 March 2005

Abstract

6-hydroxy-nido-decaborane 6-(OH) $B_{10}H_{13}$ was prepared by opening the cage $[B_{10}H_{10}]^{2-}$ in strong acidic medium. The reaction must be carried out in the presence of an inert solvent such as hexane. 6-(OH) $B_{10}H_{13}$ is obtained with a 30% yield and characterized by ¹¹B NMR and I.R. Boric acid was also detected. Attempts to reproduce the opening of the $[B_{10}H_{10}]^{2-}$ cage in basic or neutral media have been unsuccessful.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Decaborane; Decaborate; Hydroborate; Boron compound

Closo-decahydrodecaborate anion $[B_{10}H_{10}]^{2-}$ [1] and nido-decaborane $B_{10}H_{14}$ [2–4] are two different types of compounds of great importance in boron chemistry. $[B_{10}H_{10}]^{2-}$ is a bi-capped Archimedean square antiprismatic structure, where as $B_{10}H_{14}$ is a nido compound, the structure of which can be described as a fragment of an icosahedron with boron atoms at ten of the twelve vertices (Fig. 1).

 $[B_{10}H_{10}]^{2-}$ is the starting material from which $[LB_{10}H_{9}]^{-}$ derivatives are prepared [5]. These derivatives are used in boron neutron capture therapy while $B_{10}H_{14}$ is used to prepare the decaborane derivatives, 6,9- $L_2B_{10}H_{12}$ and 6- $LB_{10}H_{13}$ [6]. 6,9- $L_2B_{10}H_{12}$ is the starting product in the synthesis of carboranes $C_2B_{10}H_{12}$. 6- $LB_{10}H_{13}$ serves serve as important intermediates in the synthesis of new derivatives of $B_{10}H_{14}$ [7].

 $B_{10}H_{14}$ or its 6,9-arachno- $L_2B_{10}H_{12}$ derivatives were converted to $[B_{10}H_{10}]^{2-}$ by the action of amines [8,9] or NH₃ [10]. The reverse conversion requires the opening of the very stable $[B_{10}H_{10}]^{2-}$ cage. In strong acidic medium and in the presence of chelating and not highly polar solvent L, the cage $[B_{10}H_{10}]^{2-}$ is opened and 6,9- $L_2B_{10}H_{12}$ is produced [11-13]. When the solvent L is non polar and not chelating as C_6H_6 and in presence of the very strong acid CF₃SO₃H, the conversion products are 6-(C₆H₅)B₁₀H₁₃ and 6-(OSO₃H)B₁₀H₁₃ [13]. In highly polar solvents such as amines or nitriles, $L_2B_{10}H_{12}$, $[LB_{10}H_{11}]^-$ and $[B_{10}H_{11}]^-$ are produced [14]. We reported [15] that LB₉H₁₃, an important starting material in the synthesis of carboranes, heterocarboranes and metallaboranes, is produced.

In the present work, we report the opening reaction of the $[B_{10}H_{10}]^{2-}$ cage in acidic medium and in absence of ligand L. We prove that this reaction produces 6-(OH)B₁₀H₁₃ and not B₁₀H₁₄ as it was mentioned in the literature [19]. Since 6-(OH)B₁₀H₁₃ has been detected

^{*} Corresponding author. Tel.: +961 3 893497; fax: +961 5 461496. *E-mail addresses:* d-nawfal@inco.com.lb, dnaoufal@ul.edu.lb (D. Naoufal).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2005.01.041

Fig. 1. Structures of closo- $[B_{10}H_{10}]^{2-}$ and nido- $B_{10}H_{14}$.

Fig. 2. Possible mechanism of $6-(OH)B_{10}H_{13}$ formation by $[B_{10}H_{10}]^{2-}$ cage opening. Numbering of boron atoms is as for decaborane derivatives.

Fig. 3. Possible mechanism of formation of 6-(OH) $B_{10}H_{13}$ by $[B_{10}H_{10}]^{2-}$ cage opening.

as by product in all reactions of $\left[B_{10}H_{10}\right]^{2-}$ cage opening, we are sure that this formation is due to the pres-

ence of water molecules which act as chelating ligand in this reaction.

6,6'-bis(nido-decaboranyl) oxide, $(B_{10}H_{13})O(B_{10}H_{13})$, was prepared by the reaction of concentrated sulfuric acid with the decaborane(14) derivative, 6,9-(R₂S)₂- $B_{10}H_{12}$ (R = Et, Me) [16]. It was mentioned [17] that this reaction produces the $B_{10}H_{14}$ derivative, 6-(OH) $B_{10}H_{13}$. This method of preparation proceeds via $B_{10}H_{14}$ or its derivatives which are considered to be toxic. 6-(OH) $B_{10}H_{13}$ has also been detected as by product in

the dehydration reaction of an aqueous solution of $(H_3O)_2[B_{10}H_{10}]$ [18]. We report its simple synthesis by reaction of $(NH_4)_2[B_{10}H_{10}]$ salt with very concentrated acids (i.e., H_2SO_4 or H_3PO_4). Our reaction occurs readily at room temperature, when pure acid is added drop wise to a suspension of $(NH_4)_2[B_{10}H_{10}]$ salt in an inert solvent such as hexane. 6- $(OH)B_{10}H_{13}$ dissolves as it is formed, with a 30% yield, and thus, is not decomposed. A part of the starting material also reacts with the acid to give boric acid. To know the role of H_2O molecules, the above reaction is carried out in a more diluted acidic medium.

The reaction does not proceed and only cationic exchange takes place to produce $(H_3O)_2[B_{10}H_{10}]$. The mechanism of the reaction between $[B_{10}H_{10}]^{2-}$ and concentrated acids would be very similar to that between strong acid and a $[B_{10}H_{10}]^{2-}$ anion salt in dieth-ylsulphide suspension, from which $(Et_2S)_2B_{10}H_{12}$ is obtained [12,13]; the first step is the fixation of one proton on each of the apical positions. Cage opening occurs when hydrogen-bridge bonds form between (B-5 and B-6), (B-8)

and B-9) and boron–boron bonds are destroyed (Fig. 2). The formation of 6-(OH)B₁₀H₁₃ by the $[B_{10}H_{10}]^{2-}$ cage could be explained by another mechanism which possibly involves the reactive intermediate open cage species $[B_{10}H_{13}]^+$ formed by the addition of three protons to $[B_{10}H_{10}]^{2-}$ [20] (Fig. 3); $[B_{10}H_{13}]^+$ rearranges into an isomer by the conversion of an empty localized skeletal orbital to an empty terminal boron orbital by an internal hydride migration. The cationic B-6 then attacks H₂O, an available electron source to give 6-(OH)B₁₀H₁₃.

Attempts to reproduce the opening of the $[B_{10}H_{10}]^{2-}$ cage in basic or neutral media have been unsuccessful. For instance, the reduction of the cuprous salt $Cu_2B_{10}H_{10}$ in solution in acetonitrile by NaH does not yield the expected compound $Na_2B_{10}H_{12}$. These results confirm the role played by acids in the opening of the $[B_{10}H_{10}]^{2-}$ cage.

 $Cu_2B_{10}H_{10}+2NaH\rightarrow Na_2B_{10}H_{10}+2Cu+H_2$

1. Experimental

1.1. Synthesis

To a stirred suspension of 1.6 g (10.4 mmol) of $(NH_4)_2[B_{10}H_{10}]$ in 40 ml of hexane at room temperature

was added drop-wise 2 ml of pure sulfuric acid (2 ml in 30 min). A yellow, gummy material was formed and the solution was decanted and filtered. Hexane was removed under vacuum and yellowish-white needles of $6-(OH)B_{10}H_{13}$ were recovered (0.43 g, 3.2 mmol, yield 30%).

1.2. Characterization

Boron (11B) NMR spectra were obtained at 96.29 MHz on a Brucker WF-300 spectrometer and were, externally referenced to as $Et_2O \cdot BF_3$ (positive values downfield). (11B) NMR spectra for 6- $(OH)B_{10}H_{13}$: { $\delta(^{11}B)/ppm$: +26.72 (1B, singlet), +5.38 (3B, doublet, 143 Hz), +3.82 (2B, doublet, 158 Hz), -13.35 (2B, doublet, 170 Hz), -31.56 (1B, doublet, 160 Hz), -43.80 (1B, doublet, 157 Hz)} were in complete agreement with published data [16,17]. IR spectra were recorded on a Nicolet Magna 550 FT spectrometer using KBr pressed discs. IR spectra of 6-(OH)B₁₀H₁₃ exhibited a band at 3570 cm^{-1} , assigned to the OH stretching vibration [17]. Mass spectroscopy measurements were realized on Fisons model (EI, 70 eV) at the Mass spectroscopy Laboratory, Analytical Central Service of the CNRS, Solaise (France). For $6-(OH)B_{10}H_{13}$: m/z = 133.2, calculated 138. The difference between the experimental and calculated values of m/z could be due to the abstractions of hydrogen atoms. Such a difference was observed by Greenwood [21] for certain $B_{10}H_{14}$ derivatives.

References

- [1] R. Dobrott, W. Lipscomb, J. Chem. Phys. 37 (1962) 1779.
- [2] J. Kasper, C. Lucht, D. Harker, J. Am. Chem. Soc. 70 (1948) 881.
- [3] J. Kasper, C. Lucht, D. Harker, Acta Cryst. 3 (1950) 436.
- [4] E. Moore, R. Dickerson, W. Lipscomb, J. Chem. Phys. 27 (1957) 209.
- [5] D. Naoufal, B. Bonnetot, H. Mongeot, Polyhedron 18 (1999) 931.
- [6] R. Schaeffer, J. Am. Chem. Soc. 79 (1957) 1006.
- [7] R. Holtzmann, Production of Boranes and Related Research, Academic Press, New York, 1967.
- [8] M.F. Hawthorne, R. Pilling, Inorg. Synth. 9 (1967) 16.
- [9] T. Heying, C. Naar-Colin, Inorg. Chem. 2 (1964) 282.
- [10] E. Muettertis, J. Balthis, Y. Chia, Inorg. Chem. 3 (1964) 444.
- [11] M. Marshall, R. Hunt, G. Hefferan, US Patent 3489812, 1970.
- [12] M. Marshall, R. Hunt, G. Hefferan, J. Am. Chem. Soc. 89 (1967) 3361.
- [13] G. Guillevic, J. Dazort, H. Mongeot, J. Chem. Res. (M) (1978) 4864.
- [14] P. Wegner, D. Adams, F. Callabretta, J. Am. Chem. Soc. 95 (1973) 7513.
- [15] D. Naoufal, B. Gruner, B. Bonnetot, Main Group Metal Chem. 22 (1999) 127.
- [16] S. Hermanek, J. Plesek, B. Stibr, Coll. Czech. Chem. Commun. 33 (1968) 691.